4,778 research outputs found

    The disappearance of the "revolving door" patient in Scottish general practice: successful policies

    Get PDF
    <b>Background</b> We describe the health of "revolving door" patients in general practice in Scotland, estimate changes in their number over the timescale of the study, and explore reasons for changes, particularly related to NHS and government policy.<p></p> <b>Methods</b> A mixed methods predominantly qualitative study, using a grounded theory approach, set in Scottish general practice. Semi-structured interviews were conducted with professional key informants, 6 Practitioner Services staff who administer the GP registration system and 6 GPs with managerial or clinical experience of working with "revolving door" patients. Descriptive statistical analysis and qualitative analysis of patient removal episodes linked with routine hospital admissions, outpatient appointments, drug misuse treatment episodes and deaths were carried out with cohorts of "revolving door" patients identified from 1999 to 2005 in Scotland.<p></p> <b>Results</b> A "revolving door" patient is removed 4 or more times from GP lists in 7 years. Patients had complex health issues including substance misuse, psychiatric and physical health problems and were at high risk of dying. There was a dramatic reduction in the number of "revolving door" patients during the course of the study.<p></p> <b>Conclusions</b> "Revolving door" patients in general practice had significant health problems. Their numbers have reduced dramatically since 2004 and this probably resulted from improved drug treatment services, pressure from professional bodies to reduce patient removals and the positive ethical regulatory and financial climate of the 2004 GMS GP contract. This is a positive development for the NHS

    Shotgun proteomics as a powerful tool for the study of the proteomes of plants, their pathogens, and plant-pathogen interactions

    Get PDF
    The interaction between plants and pathogenic microorganisms is a multifaceted process mediated by both plant- and pathogen-derived molecules, including proteins, metabolites, and lipids. Large-scale proteome analysis can quantify the dynamics of proteins, biological pathways, and posttranslational modifications (PTMs) involved in the plant–pathogen interaction. Mass spectrometry (MS)-based proteomics has become the preferred method for characterizing proteins at the proteome and sub-proteome (e.g., the phosphoproteome) levels. MS-based proteomics can reveal changes in the quantitative state of a proteome and provide a foundation for understanding the mechanisms involved in plant–pathogen interactions. This review is intended as a primer for biologists that may be unfamiliar with the diverse range of methodology for MS-based shotgun proteomics, with a focus on techniques that have been used to investigate plant–pathogen interactions. We provide a summary of the essential steps required for shotgun proteomic studies of plants, pathogens and plant–pathogen interactions, including methods for protein digestion, identification, separation, and quantification. Finally, we discuss how protein PTMs may directly participate in the interaction between a pathogen and its host plant

    A complex pattern of post‐divergence expansion, contraction, introgression and asynchronous responses to Pleistocene climate changes in two Dipelta sister species from western China

    Get PDF
    The well-known vicariance and dispersal models dominate in understanding the allopatric pattern for related species and presume the simultaneous occurrence of speciation and biogeographic events. However, the formation of allopatry may postdate the species divergence. We examined this hypothesis using DNA sequence data from 3 chloroplast fragments and 5 nuclear loci of Dipelta floribunda and D. yunnanensis, two shrub species with the circum Sichuan Basin distribution, combining the climatic niche modeling approach. The best-fit model supported by the approximate Bayesian computation (ABC) analysis indicated that, D. floribunda and D. yunnanensis diverged during the mid-Pleistocene period, consistent with the largest glacial period in the Qinghai-Tibet Plateau (QTP). The historically inter-specific gene flow was identified but seemed to have ceased after the last interglacial period (LIG), when the range of D. floribunda moved northward from the south of the Sichuan Basin. Further, populations of D. floribunda had expanded obviously in the north of the Sichuan Basin after the last glacial maximum (LGM). Relatively, the range of D. yunnanensis expanded before the LGM, reduced during the post-LGM especially in the north of the Sichuan Basin, reflecting the asynchronous responses of related species to the contemporary climate changes. Our results suggested that complex topography should be considered in understanding the distributional patterns even for closely related species and their demographic responses

    Superconductivity in Cu_xTiSe_2

    Full text link
    Charge density waves (CDWs) are periodic modulations of the conduction electron density in solids. They are collective states that arise from intrinsic instabilities often present in low dimensional electronic systems. The layered dichalcogenides are the most well-studied examples, with TiSe_2 one of the first CDW-bearing materials known. The competition between CDW and superconducting collective electronic states at low temperatures has long been held and explored, and yet no chemical system has been previously reported where finely controlled chemical tuning allows this competition to be studied in detail. Here we report how, upon controlled intercalation of TiSe_2 with Cu to yield Cu_xTiSe_2, the CDW transition is continuously suppressed, and a new superconducting state emerges near x = 0.04, with a maximum T_c of 4.15 K found at x = 0.08. Cu_xTiSe_2 thus provides the first opportunity to study the CDW to Superconductivity transition in detail through an easily-controllable chemical parameter, and will provide new insights into the behavior of correlated electron systems.Comment: Accepted to Nature Physic

    Management and efficacy of intensified insulin therapy starting in outpatients

    Get PDF
    Diabetic patients under multiple injection insulin therapy (i.e., intensified insulin therapy, IIT) usually start this treatment during hospitalization. We report here on the logistics, efficacy, and safety of IIT, started in outpatients. Over 8 months, 52 type I and type II diabetics were followed up whose insulin regimens consecutively had been changed from conventional therapy to IIT. Two different IIT strategies were compared: free mixtures of regular and intermediate (12 hrs)-acting insulin versus the basal and prandial insulin treatment with preprandial injections of regular insulin, and ultralente (24 hrs-acting) or intermediate insulin for the basal demand. After 8 months HbA1 levels had decreased from 10.6%±2.4% to 8.0%±1.3% (means±SD). There was no difference between the two regimens with respect to metabolic control; but type II patients maintained the lowered HbA1 levels better than type I patients. Only two patients were hospitalized during the follow-up time because of severe hypoglycemia. An increase of body weight due to the diet liberalization during IIT became a problem in one-third of the patients. Our results suggest that outpatient initiation of IIT is safe and efficacious with respect to near-normoglycemic control. Weight control may become a problem in IIT patients

    Interplay of quantum and classical fluctuations near quantum critical points

    Full text link
    For a system near a quantum critical point (QCP), above its lower critical dimension dLd_L, there is in general a critical line of second order phase transitions that separates the broken symmetry phase at finite temperatures from the disordered phase. The phase transitions along this line are governed by thermal critical exponents that are different from those associated with the quantum critical point. We point out that, if the effective dimension of the QCP, deff=d+zd_{eff}=d+z (dd is the Euclidean dimension of the system and zz the dynamic quantum critical exponent) is above its upper critical dimension dCd_C, there is an intermingle of classical (thermal) and quantum critical fluctuations near the QCP. This is due to the breakdown of the generalized scaling relation ψ=νz\psi=\nu z between the shift exponent ψ\psi of the critical line and the crossover exponent νz\nu z, for d+z>dCd+z>d_C by a \textit{dangerous irrelevant interaction}. This phenomenon has clear experimental consequences, like the suppression of the amplitude of classical critical fluctuations near the line of finite temperature phase transitions as the critical temperature is reduced approaching the QCP.Comment: 10 pages, 6 figures, to be published in Brazilian Journal of Physic

    A model of Bˉ0D+ωπ\bar{B}^0\to D^{*+}\omega\pi^- decay

    Full text link
    We suggest a parameterization of the matrix element for Bˉ0D+ωπ\bar{B}^0\to D^{*+}\omega\pi^- decay using kinematic variables convenient for experimental analysis. The contributions of intermediate ωπ\omega\pi- and DD^{**}-states up to spin 3 have been taken into account. The angular distributions for each discussed hypothesis have been obtained and analysed using Monte-Carlo simulation.Comment: 24 pages, 9 figures, 1 table; V2: text in some places improved and acknowledgments adde

    A cluster randomized controlled trial of the effectiveness and cost-effectiveness of Intermediate Care Clinics for Diabetes (ICCD) : study protocol for a randomized controlled trial

    Get PDF
    Background World-wide healthcare systems are faced with an epidemic of type 2 diabetes. In the United Kingdom, clinical care is primarily provided by general practitioners (GPs) rather than hospital specialists. Intermediate care clinics for diabetes (ICCD) potentially provide a model for supporting GPs in their care of people with poorly controlled type 2 diabetes and in their management of cardiovascular risk factors. This study aims to (1) compare patients with type 2 diabetes registered with practices that have access to an ICCD service with those that have access only to usual hospital care; (2) assess the cost-effectiveness of the intervention; and (3) explore the views and experiences of patients, health professionals and other stakeholders. Methods/Design This two-arm cluster randomized controlled trial (with integral economic evaluation and qualitative study) is set in general practices in three UK Primary Care Trusts. Practices are randomized to one of two groups with patients referred to either an ICCD (intervention) or to hospital care (control). Intervention group: GP practices in the intervention arm have the opportunity to refer patients to an ICCD - a multidisciplinary team led by a specialist nurse and a diabetologist. Patients are reviewed and managed in the ICCD for a short period with a goal of improving diabetes and cardiovascular risk factor control and are then referred back to practice. or Control group: Standard GP care, with referral to secondary care as required, but no access to ICCD. Participants are adults aged 18 years or older who have type 2 diabetes that is difficult for their GPs to control. The primary outcome is the proportion of participants reaching three risk factor targets: HbA1c (≤7.0%); blood pressure (<140/80); and cholesterol (<4 mmol/l), at the end of the 18-month intervention period. The main secondary outcomes are the proportion of participants reaching individual risk factor targets and the overall 10-year risks for coronary heart disease(CHD) and stroke assessed by the United Kingdom Prospective Diabetes Study (UKPDS) risk engine. Other secondary outcomes include body mass index and waist circumference, use of medication, reported smoking, emotional adjustment, patient satisfaction and views on continuity, costs and health related quality of life. We aimed to randomize 50 practices and recruit 2,555 patients
    corecore